Abstract
Since therapy-induced senescence (TIS) can either support or inhibit cancer progression, identifying which types of chemotherapeutic agents can produce the strongest anti-tumor TIS is an important issue. Here, cyclin-dependent kinase4/6 inhibitors (CDK4/6i)-induced senescence was compared to the TIS induced by conventional DNA-damaging agents. Despite both types of agents eliciting a similar degree of senescence, we observed increased expression of the senescence-associated secretory phenotype (SASP) and ligands related to pro-tumor immunity (IL6, CXCL8, TGFβ, CD274, and CEACAM1) and angiogenesis (VEGFA) mainly in TIS induced by DNA-damaging agents rather than by CDK4/6i. Additionally, although all agents increased the expression of anti-tumor immunomodulatory proteins related to antigen presentation (MHC-I, B2M) and T cell chemokines (CXCL9, 10, 11), CDK4/6i-induced senescent cells still maintained this expression at a similar or even higher intensity than cells treated with DNA-damaging agents, despite the absence of nuclear factor-kappa-B (NF-κB) and p53 activation. These data suggest that in contrast with DNA-damaging agents, which augment the pro-tumorigenic microenvironment via pro-inflammatory SASP, CDK4/6i can generate TIS only with antitumor immunomodulatory proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.