Abstract

Cell resistance to taxanes involves several complementary mechanisms, among which septin relocalization from actin stress fibers to microtubules plays an early role. By investigating the molecular mechanism underlying this relocalization, we found that acute paclitaxel treatment triggers the release from stress fibers and subsequent proteasome-mediated degradation of binder of Rho GTPases 2 (BORG2)/Cdc42 effector protein 3 (Cdc42EP3) and to a lesser extent of BORG3/Cdc42EP5, two Cdc42 effectors that link septins to actin in interphase cells. BORG2 or BORG3 silencing not only caused septin detachment from stress fibers but also mimicked the effects of paclitaxel by triggering both septin relocalization to microtubules and significant drug resistance. Conversely, BORG2 or BORG3 overexpression retained septins on actin fibers even after paclitaxel treatment, without affecting paclitaxel sensitivity. We found that drug-induced inhibition of Cdc42 resulted in a drop in BORG2 level and in the relocalization of septins to microtubules. Accordingly, although septins relocalized when overexpressing an inactive mutant of Cdc42, the expression of a constitutively active mutant acted locally at actin stress fibers to prevent septin release, even after paclitaxel treatment. These findings reveal the role of Cdc42 upstream of BORG2 and BORG3 in controlling the interplay between septins, actin fibers, and microtubules in basal condition and in response to taxanes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.