Abstract

One of the major hurdles facing cancer immunotherapy is that cancers may downregulate expression of MHC class I molecules. The development of a suitable tumor model with downregulated MHC class I expression is critical for designing vaccines and immunotherapeutic strategies to control such tumors. We developed an E7-expressing murine tumor model with downregulated MHC class I expression, TC-1 P3 (A15). Using this model, we tested DNA and vaccinia vaccines for their ability to control tumors with downregulated MHC class I expression. We found that vaccination with DNA encoding E7 linked to Mycobacterial heat shock protein 70 (HSP70) generated a significant antitumor effect against TC-1 P3 (A15), while vaccination with E7/HSP70 vaccinia did not generate an appreciable antitumor effect. Lymphocyte depletion experiments revealed that both CD8+ T cells and NK cells were essential for the antitumor effect generated by E7/HSP70 DNA against TC-1 P3 (A15). Furthermore, tumor protection experiments using IFN-gamma knockout mice revealed that IFN-gamma was essential for the antitumor effect generated by E7/HSP70 DNA against TC-1 P3 (A15). Our results demonstrate that vaccination with E7/HSP70 DNA results in a significant antitumor effect against a neoplasm with downregulated MHC class I expression and the importance of CD8+ T cells, NK cells, and IFN-gamma in generating this antitumor effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.