Abstract

BackgroundThe formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Until recently, tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). While it is generally understood that the function of VM vessels is the same as that of EC-lined vessels (i.e. to supply oxygen and nutrients to the proliferating cancer cells), the molecular mechanisms underpinning VM are yet to be fully elucidated.MethodsHuman VM-competent melanoma cell lines were examined for their VM potential using the in vitro angiogenesis assays (Matrigel), together with inhibition studies using small interfering RNA and blocking monoclonal antibodies. Invasion assays and adhesion assays were used to examine cancer cell function.ResultsHerein we demonstrate that CD36, a cell surface glycoprotein known to promote angiogenesis by ECs, also supports VM formation by human melanoma cancer cells. In silico analysis of CD36 expression within the melanoma cohort of The Cancer Genome Atlas suggests that melanoma patients with high expression of CD36 have a poorer clinical outcome. Using in vitro ‘angiogenesis’ assays and CD36-knockdown approaches, we reveal that CD36 supports VM formation by human melanoma cells as well as adhesion to, and invasion through, a cancer derived extracellular matrix substrate. Interestingly, thrombospondin-1 (TSP-1), a ligand for CD36 on ECs that inhibits angiogenesis, has no effect on VM formation. Further investigation revealed a role for laminin, but not collagen or fibronectin, as ligands for CD36 expressing melanoma cells.ConclusionsTaken together, this study suggests that CD36 is a novel regulator of VM by melanoma cancer cells that is facilitated, at least in part, via integrin-α3 and laminin. Unlike angiogenesis, VM is not perturbed by the presence of TSP-1, thus providing new information on differences between these two processes of tumor vascularization which may be exploited to combat cancer progression.

Highlights

  • The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis

  • High CD36 gene expression suggests poor clinical outcome for patients with melanoma Data obtained from The Cancer Genome Atlas (TCGA) was used to determine the significance of CD36 gene expression in the survival of patients with melanoma (TCGA-SKCM project, n = 470)

  • Melanoma cells perform vasculogenic mimicry which is, in part, mediated by CD36 To determine whether CD36 expression contributes to VM in melanoma, in vitro VM assays were performed using two human melanoma cells lines, C32 and SKMEL-28 without and with CD36 knockdown

Read more

Summary

Introduction

The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). VM occurs when highly aggressive malignant cells undergo cellular phenotypic changes to resemble endothelial cells (ECs) which form the inner lining of all vasculature. While these malignant cells display EC markers, i.e. vascular endothelial (VE)-cadherin, ephrin receptor A2 (EphA2) and E-selectin, and like ECs can secrete many basement membrane relevant proteins, they do have little to no expression of EC-specific proteins such as CD31 (PECAM-1) and TIE-2 [12, 13]. Histological staining with the periodic acid-Schiff stain (PAS, recognizing basement membrane proteins) used in conjunction with an antibody to CD31 is the universally accepted protocol to distinguish VM structures as PAS-positive/CD31negative from the EC-lined PAS-positive/CD31-positive vasculature [14,15,16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.