Abstract

BackgroundCD1d is a widely expressed lipid antigen presenting molecule required for CD1d-restricted invariant natural killer T (iNKT) cell development. Elevated CD1d expression is detected in CD5+ IL10-producing B cells, called B10 B cells, and is correlated with poorer prognosis in chronic lymphocytic leukemia (CLL), a CD5+ B cell malignancy with B10-like functional properties. Whether CD1d expression regulates CD5+ B cell accumulation, IL10 competence, and antibody production in naïve mice with pathologic CD5+ B cell expansion remains untested.ResultsUsing three different transgenic mouse models of benign or leukemic CD5+ B cell expansion, we found that CD1d was differentially expressed on CD5+ B cells between the three models, but loss of CD1d expression had no effect on CD5+ B cell abundance or inducible IL10 expression in any of the models. Interestingly, in the CLL-prone Eμ-TCL1 model, loss of CD1d expression suppressed spontaneous IgG (but not IgM) production, whereas in the dnRAG1xEμ-TCL1 (DTG) model of accelerated CLL, loss of CD1d expression was associated with elevated numbers of splenic CD4+ and CD8+ T cells and an inverted CD4+:CD8+ T cell ratio. Unexpectedly, before leukemia onset, all three transgenic CD1d-deficient mouse strains had fewer splenic transitional B cells than their CD1d-proficient counterparts.ConclusionsThe results show that CD1d expression and iNKT cells are dispensable for the development, accumulation, or IL10 competence of CD5+ B cells in mice prone to benign or leukemic CLL-like B cell expansion, but reveal a novel role for iNKT cells in supporting B cell progression through the transitional stage of development in these animals. These results suggest CD1d-directed therapies to target CLL could be evaded by downregulating CD1d expression with little effect on continued leukemic CD5+ B cell survival. The data also imply that iNKT cells help restrain pro-leukemic CD8+ T cell expansion in CLL, potentially explaining a reported correlation in human CLL between disease progression, the loss of NKT cells, and a paradoxical increase in CD8+ T cells.Electronic supplementary materialThe online version of this article (doi:10.1186/s12865-015-0130-z) contains supplementary material, which is available to authorized users.

Highlights

  • CD1d is a widely expressed lipid antigen presenting molecule required for CD1d-restricted invariant natural killer T cell development

  • CD1d is broadly expressed in various B cell chronic lymphoproliferative disorders (B-CLPDs): CD1d expression on leukemic B cells in chronic lymphocytic leukemia (CLL) is generally lower than on other B-CLPDs [5], but elevated CD1d expression in CLL has been associated with the presence of unmutated immunoglobulin variable region genes [6] and poor prognosis [7], Palmer et al BMC Immunology (2015) 16:66 suggesting its potential utility as a biomarker for this disease

  • CD5+ B cells in dnRAG1 and DTG mice express elevated levels of CD1d the CD5+ B cells accumulating in dnRAG1 mice and DTG mice phenotypically resemble B10 B cells insofar as CD5 expression is concerned, unlike the B10 B cells described in early studies [4], they do not express CD21 [18]

Read more

Summary

Introduction

CD1d is a widely expressed lipid antigen presenting molecule required for CD1d-restricted invariant natural killer T (iNKT) cell development. Elevated CD1d expression is detected in CD5+ IL10-producing B cells, called B10 B cells, and is correlated with poorer prognosis in chronic lymphocytic leukemia (CLL), a CD5+ B cell malignancy with B10-like functional properties. CD1d is a non-polymorphic MHC-like molecule that functions to present lipid-based antigens to a subset of T cells expressing natural killer cell lineage markers and a CD1d-restricted T cell receptor. Most of these CD1drestricted T cells express a T cell receptor comprised of a semi-invariant TCRα chain paired with a member of a restricted set of TCRβ chains, and are termed invariant natural killer T (iNKT) cells [1]. A recent report established that murine and human CLL cells, like B10 cells, are IL10competent [8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.