Abstract

The cloud droplet activation of monodisperse laboratory aerosols consisting of single organic and inorganic substances as well as a mixture of several substances was investigated using the University of Vienna cloud condensation nuclei counter (CCNC). The CCNC operates on the principle of a static thermal diffusion chamber. Water vapour supersaturations can be set in the range from 0.1% to 2%. Aqueous solutions of oxalic acid and malonic acid as well as solutions of inorganic compounds (NaCl and (NH 4) 2SO 4) were nebulized in a Collison atomizer and then passed through a closed-loop differential mobility particle spectrometer to produce monodispersed particles. An internally mixed aerosol consisting of ammonium sulphate, oxalic acid and malonic acid with relative concentrations resembling those found in cloud water at a mountain station [Löflund, Kasper-Giebl, Schuster, Giebl, Hitzenberger, Reischl et al. (2002) Atmos. Environ. 36, 1553] was also investigated for cloud condensation nuclei (CCN) activation. All these particles were activated at supersaturations expected from Köhler theory. Oxalic and malonic acid particles are therefore expected to be good atmospheric CCN both as pure particles and as internally mixed particles containing other chemical compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.