Abstract

Attrapadung (Eurocrypt 2014) proposed a generic framework called pair encoding to simplify the design and proof of security of CPA-secure predicate encryption (PE) in composite order groups. Later Attrapadung (Asiacrypt 2016) extended this idea in prime order groups. Yamada et al. (PKC 2011, PKC 2012) and Nandi et al. (ePrint Archive: 2015/457, AAECC 2017) proposed generic conversion frameworks to achieve CCA-secure PE from CPA-secure PE provided the encryption schemes have properties like delegation or verifiability. The delegation property is harder to achieve and verifiability based conversion degrades the decryption performance due to a large number of additional pairing evaluations. Blomer et al. (CT-RSA 2016) proposed a direct fully CCA-secure predicate encryption in composite order groups but it was less efficient as it needed a large number of pairing evaluations to check ciphertext consistency. As an alternative, Nandi et al. (ePrint Archive: 2015/955) proposed a direct conversion technique in composite order groups. We extend the direct conversion technique of Nandi et al. in the prime order groups on the CPA-secure PE construction by Attrapadung (Asiacrypt 2016) and prove our scheme to be CCA-secure in a quite different manner. Our first direct CCA-secure predicate encryption scheme requires exactly one additional ciphertext component and three additional units of pairing evaluation during decryption. The second construction requires exactly three additional ciphertext components but needs only one additional unit pairing evaluation during decryption. This is a significant improvement over conventional approach for CPA-to-CCA conversion in prime order groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.