Abstract
Integrins are essential in the complex multistep process of angiogenesis and are thus attractive targets for the development of antiangiogenic therapies. Integrins are antagonized by disintegrins and C-type lectin-like proteins, two protein families from snake venom. Here, we report that CC-PLA2-1 and CC-PLA2-2, two novel secreted phospholipases A2 (PLA2) isolated from Cerastes cerastes venom, also showed anti-integrin activity. Indeed, both PLA2s efficiently inhibited human brain microvascular endothelial cell adhesion and migration to fibrinogen and fibronectin in a dose-dependent manner. Interestingly, we show that this anti-adhesive effect was mediated by α5β1 and αv-containing integrins. CC-PLA2s also impaired in vitro human brain microvascular endothelial cell tubulogenesis on Matrigel and showed antiangiogenic activity in vivo in chicken chorioallantoic membrane assay. The complete PLA2 cDNAs were cloned from a venom gland cDNA library. Mature CC-PLA2-1 and CC-PLA2-2 contain 121 and 120 amino acids, respectively, including 14 cysteines each and showed 83% identity. Tertiary model structures of CC-PLA2-1 and CC-PLA2-2 were generated by homology modeling. This is thus the first study describing an antiangiogenic effect for snake venom PLA2s and reporting first clues to their mechanism of action on endothelial cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.