Abstract

The control of one light field by another, ultimately at the single photon level1,2,3,4,5,6,7, is a challenging task that has numerous interesting applications within nonlinear optics4,5 and quantum information science6,7,8. This type of control can only be achieved through highly nonlinear interactions, such as those based on electromagnetic induced transparency (EIT)2,3,4,5,6,9,10,11,12. Here, we demonstrate for the first time EIT as well as all-optical EIT-based light switching using ion Coulomb crystals situated in an optical cavity. Changes from essentially full transmission to full absorption of a single photon probe field are achieved within unprecedentedly narrow EIT windows of a few tens of kilohertz. By applying a weak switching field, this allows us to demonstrate nearly perfect switching of the transmission of the probe field. The results represent important milestones for future realizations of quantum information processing devices, such as high-efficiency quantum memories8,13,14, single-photon transistors15,16 and single-photon gates4,6,9. Researchers demonstrate all-optical light switching based on electromagnetically induced transparency at the single-photon level using a Coulomb crystal of 40Ca+ ions enclosed in a moderately high-finesse linear cavity. Changes from essentially full transmission to full absorption for a single-photon probe field were achieved within unprecedentedly narrow windows of 47.5 ± 2.4 kHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.