Abstract

The penetration of a projectile into a strongly coupled dusty plasma was studied in a radio-frequency discharge under microgravity conditions. A supersonic projectile produces an elongated dust-free cavity in its wake. The dynamics of the cavity is analyzed and compared with Langevin dynamics simulations. Besides a three-dimensional Mach cone structure, the simulation shows that the cavity dynamics can be subdivided into three phases: An opening phase with fixed time scale, a closing phase, whose duration is affected by the projectile speed and, finally, a phase of particle realignment in the target cloud, which persists for a long time after the closure of the cavity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.