Abstract

A stochastic sensitivity analysis and calibration of the cavitation model parameters in the URANS simulations of a configuration representative of high-pressure injectors for automotive applications is carried out. A popular homogeneous-flow cavitation model is considered, in which the mass transfer due to cavitation is given by the Schnerr–Sauer model together with the classical Rayleigh–Plesset equation. A stochastic approach based on the generalized Polynomial Chaos (gPC) expansion is adopted, which allows continuous response surfaces of the quantities of interest in the parameter space to be obtained starting from a few deterministic simulations. The considered uncertain parameters are the so-called scaling factors. The calibration of these parameters is carried out by using the gPC response surfaces for a axisymmetric simplified geometry against the experimental value of the critical cavitation point, i.e. the condition at which the injector is choked. The procedure is carried out for two different turbulence models, viz. the k − ω SST and RSM models. The so-obtained optimal parameter set-ups are then validated for the real three-dimensional geometry. The k − ω SST optimal set-up gives very accurate predictions also in the three-dimensional case. Finally, the results obtained with this optimal set-up are compared to those given by standard values, confirming that the predictions of the different flow regimes occurring in high-pressure injectors are highly sensitive to cavitation model parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.