Abstract
Mutations of the caveolin 3 gene cause autosomal dominant limb-girdle muscular dystrophy (LGMD)1C. In mice, overexpression of mutant caveolin 3 leads to loss of caveolin 3 and results in myofiber hypotrophy in association with activation of neuronal nitric oxide synthase (nNOS) at the sarcolemma. Here, we show that caveolin 3 directly bound to nNOS and suppressed its phosphorylation-dependent activation at a specific residue, Ser1412 in the nicotinamide adenine dinucleotide phosphate (NADPH)−flavin adenine dinucleotide (FAD) module near the C-terminus of the reduction domain, in vitro. Constitutively active nNOS enhanced myoblast fusion, but not myogenesis, in vitro. Phosphorylation-dependent activation of nNOS occurred in muscles from caveolin 3-mutant mice and LGMD1C patients. Mating with nNOS-mutant mice exacerbated myofiber hypotrophy in the caveolin 3-mutant mice. In nNOS-mutant mice, regenerating myofibers after cardiotoxin injury became hypotrophic with reduced myoblast fusion. Administration of NO donor increased myofiber size and the number of myonuclei in the caveolin 3-mutant mice. Exercise also increased myofiber size accompanied by phosphorylation-dependent activation of nNOS in wild-type and caveolin 3-mutant mice. These data indicate that caveolin 3 inhibits phosphorylation-dependent activation of nNOS, which leads to myofiber hypertrophy via enhancing myoblast fusion. Hypertrophic signaling by nNOS phosphorylation could act in a compensatory manner in caveolin 3-deficient muscles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.