Abstract

Euler used intrinsic equations expressing the radius of curvature as a function of the angle of inclination to find curves similar to their evolutes. We interpret the evolute of a plane curve optically, as the caustic (envelope) of light rays normal to it, and study the Euler's problem for general caustics. The resulting curves are characterized when the rays are at a constant angle to the curve, generalizing the case of evolutes. Aside from analogs of classical solutions we encounter some new types of curves. We also consider caustics of parallel rays reflected by a curved mirror, where Euler's problem leads to a novel pantograph equation, and describe its analytic solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.