Abstract

In personalised decision making, evidence is required to determine whether an action (treatment) is suitable for an individual. Such evidence can be obtained by modelling treatment effect heterogeneity in subgroups. The existing interpretable modelling methods take a top-down approach to search for subgroups with heterogeneous treatment effects and they may miss the most specific and relevant context for an individual. In this paper, we design a Treatment effect pattern (TEP) to represent treatment effect heterogeneity in data. To achieve an interpretable presentation of TEPs, we use a local causal structure around the outcome to explicitly show how those important variables are used in modelling. We also derive a formula for unbiasedly estimating the Conditional Average Causal Effect (CATE) using the local structure in our problem setting. In the discovery process, we aim at minimising heterogeneity within each subgroup represented by a pattern. We propose a bottom-up search algorithm to discover the most specific patterns fitting individual circumstances the best for personalised decision making. Experiments show that the proposed method models treatment effect heterogeneity better than three other existing tree based methods in synthetic and real world data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.