Abstract
We study a class of third-order hyperbolic operators P in G = {(t, x): 0 ≤ t ≤ T, x ∈ U ⋐ ℝn} with triple characteristics at ρ = (0, x0, ξ), ξ ∈ ℝn ∖{0}. We consider the case when the fundamental matrix of the principal symbol of P at ρ has a couple of non-vanishing real eigenvalues. Such operators are called effectively hyperbolic. Ivrii introduced the conjecture that every effectively hyperbolic operator is strongly hyperbolic, that is the Cauchy problem for P + Q is locally well posed for any lower order terms Q. This conjecture has been solved for operators having at most double characteristics and for operators with triple characteristics in the case when the principal symbol admits a factorization. A strongly hyperbolic operator in G could have triple characteristics in G only for t = 0 or for t = T. We prove that the operators in our class are strongly hyperbolic if T is small enough. Our proof is based on energy estimates with a loss of regularity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.