Abstract

The design and preparation of an excellent corrosion protection coating is still a grand challenge and is essential for large-scale practical application. Herein, a novel cationic reduced graphene oxide (denoted as RGO-ID+)-based epoxy coating was fabricated for corrosion protection. RGO-ID+ was synthesized by in situ synthesis and salification reaction, which is stable dispersion in water and epoxy latex, and the self-aligned RGO-ID+-reinforced cathodic electrophoretic epoxy nanocomposite coating (denoted as RGO-ID+ coating) at the surface of metal was prepared by electrodeposition. The self-alignment of RGO-ID+ in the coatings is mainly attributed to the electric field force. The significantly enhanced anticorrosion performance of RGO-ID+ coating is proved by a series of electrochemical measurements in different concentrated NaCl solutions and salt spray tests. This superior anticorrosion property benefits from the self-aligned RGO-ID+ nanosheets and the quaternary-N groups present in the RGO-ID+ nanocomposite coating. Interestingly, the RGO-ID+ also exhibits a high antibacterial activity toward Escherichia coli with 83.4 ± 1.3% antibacterial efficiency, which is attributed to the synergetic effects of RGO-ID+ and the electrostatic attraction and hydrogen bonding between RGO-ID+ and E. coli. This work offers new opportunities for the successful development of effective corrosion protection and self-antibacterial coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.