Abstract

Electrocatalytic hydrogen peroxide (H2 O2 ) synthesis via the two-electron oxygen reduction reaction (2e ORR) pathway is becoming increasingly important due to the green production process. Here, cationic vacancies on nickel phosphide, as a proof-of-concept to regulate the catalyst's physicochemical properties, are introduced for efficient H2 O2 electrosynthesis. The as-fabricated Ni cationic vacancies (VNi )-enriched Ni2- x P-VNi electrocatalyst exhibits remarkable 2e ORR performance with H2 O2 molar fraction of >95% and Faradaic efficiencies of >90% in all pH conditions under a wide range of applied potentials. Impressively, the as-created VNi possesses superb long-term durability for over 50 h, suppassing all the recently reported catalysts for H2 O2 electrosynthesis. Operando X-ray absorption near-edge spectroscopy (XANES) and synchrotron Fourier transform infrared (SR-FTIR) combining theoretical calculations reveal that the excellent catalytic performance originates from the VNi -induced geometric and electronic structural optimization, thus promoting oxygen adsorption to the 2e ORR favored "end-on" configuration. It is believed that the demonstrated cation vacancy engineering is an effective strategy toward creating active heterogeneous catalysts with atomic precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.