Abstract

Cobalt-free Li and Mn-rich layered cathode materials are promising for next generation lithium ion batteries due to their high specific capacity and low cost. However, these materials are facing serious issues, such as structural collapse due to volume shrinkage during Ni2+ oxidation to Ni4+ and oxygen vacancy generation over 4.5V. In this work, we report a strategy to address the issue of volume shrinkage caused by structural deformation via constructing a large-size rigid frame by simultaneously doping inactive and large radius atoms of Cd and S. This strategy significantly reduces the volume shrinkage when fully delithiated relative to the pristine material. The Cd- and S-doped cathode materials present a highly reversible structure, which were determined by using HAADF-STEM and in-situ XRD characterization. The doped Cd and S atoms act as supporting atoms and synergistically enlarge the layer spacing of crystalline from 0.455 to 0.483 nm. The in-situ XRD monitors the structural changes in real time during charging and discharging processes, further verifying structural stability during cycling. Due to the unique structural properites, an initial capacity of 268.5 mAh g−1 at 0.1 C along with a good rate capacity of 153.8 mAh g−1 at 5 C were achieved. Also, a capacity of 243.4 mAh g-1 at 0.1 C over 80 cycles indicate good cyclic stability of the co-doped Li- and Mn-rich layered cathode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.