Abstract

Cathodoluminescence spectroscopy and spectrum imaging are employed to investigate Cu(In,Ga)Se2 (CIGS) thin films used in high-efficiency solar cells. We have found a nonuniform spatial distribution for the photon energy. The shift by decade of the emission spectrum is also found to depend systematically on the location of excitation. In addition, the photon energy at grain boundaries is not affected by the external excitation. A model for radiative recombination to be applied to these chalcopyrite compounds should explain these results, and some suggestions are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.