Abstract

Cathodoluminescence (CL) measurements have been performed on Ge doped and Ge/F co-doped optical fibers, in the aim of studying the spatial distributions of the emitting precursor defects present in the as-drawn optical fiber as well as those of the radiation induced centers generated by the 10keV electron exposure. Using the CL instrument, we recorded different emission bands located in the visible spectral domain (300–750nm) as well as CL imaging of associated defects, with a spatial resolution of about 1µm, along the fiber transverse cross sections. In the pristine fiber, Germanium Lone Pair Centers (GLPCs) emitting at 400nm are the main precursor sites observed in both fibers. Whereas during electron exposure, these centers are converted into other Ge-related defects. In this paper, we studied in situ their bleaching kinetic using CL monochromatic imaging. As expected, our results show that the GLPC signal decreases with the electron fluence, confirming its precursor role. Thanks to the CL abilities, we also demonstrate that the GLPC conversion into radiation induced defects (and then its bleaching kinetic) depends on the germanium concentration, opening the way to a better control of the radiation sensitivity of germanosilicate glass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.