Abstract

Cathodic reactions, specially the oxygen and hydrogen activities, have been extensively investigated on carbon steel in simulated fuel-grade ethanol (SFGE) environments using cathodic potentiodynamic polarization and electrochemical impedance spectroscopy. Under normal conditions, oxygen reduction is the major cathodic reaction for carbon steel in SFGE. Hydrogen evolution, confirmed by hydrogen permeation test, is activated by de-aeration and at much higher cathodic overpotential. The dissociation of acetic acid in SFGE enhances the proton related cathodic reactions. Water in ethanol can increase the proton dissociation rate, resulting in a higher cathodic current density. At potentials close to free corrosion potential, the reduction of surface oxidized products contributes to the cathodic activities in SFGE. Based on this study, the possible effects of cathodic reactions on corrosion of carbon steel in SFGE are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.