Abstract

BackgroundThe cysteine peptidase cathepsin B is important in thyroid physiology by being involved in prohormone processing initiated in the follicle lumen and completed in endo-lysosomal compartments. However, cathepsin B has also been localized to the extrafollicular space in thyroid cancer tissue, and is therefore suggested to promote invasiveness and metastasis in thyroid carcinomas through e.g. extracellular matrix degradation.MethodsTransport of cathepsin B in normal thyroid epithelial and carcinoma cells was investigated through immunolocalization of endogenous cathepsin B in combination with probing protease activity. Transport analyses of cathepsin B-eGFP and its active-site mutant counterpart cathepsin B-C29A-eGFP were used to test whether intrinsic sequences of a protease influence its trafficking.ResultsOur approach employing activity based probes, which distinguish between active and inactive cysteine proteases, demonstrated that both eGFP-tagged normal and active-site mutated cathepsin B chimeras reached the endo-lysosomal compartments of thyroid epithelial cells, thereby ruling out alterations of sorting signals by mutagenesis of the active-site cysteine. Analysis of chimeric protein trafficking further showed that GFP-tagged cathepsin B was transported to the expected compartments, i.e. endoplasmic reticulum, Golgi apparatus and endo-lysosomes of normal and thyroid carcinoma cell lines. However, the active-site mutated cathepsin B chimera was mostly retained in the endoplasmic reticulum and Golgi of KTC-1 and HTh7 cells. Hence the latter, as the least polarized of the three carcinoma cell lines analyzed, exhibited severe transport defects in that it retained chimeras in pre-endolysosomal compartments. Furthermore, secretion of endogenous cathepsin B and of other cysteine peptidases, which occurs at the apical pole of normal thyroid epithelial cells, was most prominent and occurred in a non-directed fashion in thyroid carcinoma cells.ConclusionsTransport of endogenous and eGFP-tagged active and inactive cathepsin B in the cultured thyroid carcinoma cells reflected the distribution patterns of this protease in thyroid carcinoma tissue. Hence, our studies showed that sub-cellular localization of proteolysis is a crucial step in regulation of tissue homeostasis. We conclude that any interference with protease trafficking resulting in altered regulation of proteolytic events leads to, or is a consequence of the onset and progression of thyroid cancer.

Highlights

  • The cysteine peptidase cathepsin B is important in thyroid physiology by being involved in prohormone processing initiated in the follicle lumen and completed in endo-lysosomal compartments

  • Localization of cathepsin B in human thyroid tissue Human tissue obtained from patients affected by follicular thyroid carcinoma (FTC) or papillary thyroid carcinoma (PTC) was analyzed in order to determine the general tissue architecture and the localization of endogenous cathepsin B

  • Cathepsin B is secreted from KTC-1 cells We have previously shown that cathepsin B is one of the main if not the major cysteine peptidase active in KTC-1, HTh7 or HTh74 cells, and that its predominant expression pattern is vesicular in these thyroid carcinoma cell lines [21]

Read more

Summary

Introduction

The cysteine peptidase cathepsin B is important in thyroid physiology by being involved in prohormone processing initiated in the follicle lumen and completed in endo-lysosomal compartments. Cathepsin B is a ubiquitously expressed member of the family of papain-like cysteine peptidases, but it is exceptional in exhibiting endo- and and in particular cathepsin B, are considered to be involved in malignancies and cancer progression due to an increase in expression and activity in cancer cells as well as due to increased secretion from tumor-associated cells [8,9,10,11,12] Because proteases display their functions by an irreversible mode of substrate cleavage, it is considered crucial to determine (i) time, (ii) location and (iii) extent of proteolytic cleavage in order to understand protease actions in physiology and pathology [1,6,13,14]. Despite a low expression of thyroglobulin mRNA by HTh74 cells [23], we and others have shown that this cell line still expresses functional TSH receptors [21,24]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.