Abstract

Sentiment analysis is an important study topic with diverse application domains including social network monitoring and automatic analysis of the body of natural language communication. Existing research on sentiment analysis has already utilised substantial domain knowledge available online comprising users’ opinion in various areas such as business, education, and social media. There is however limited literature available on Arabic language sentiment analysis. Furthermore, datasets used in majority of these studies have poor classification. In the present study, we utilised a primary dataset comprising 2122 sentences and 15,331 words compiled from 206 publicly available online posts to perform sentiment classification by using advanced machine learning technique based on Artificial Neural Networks. Unlike lexicon-based techniques that suffer from low accuracy due to their computational nature and parameter configuration, Artificial Neural Networks were used to classify people opinion posts into three categories including conservative, reform and revolution, accompanied by multiple hasher vector size to benchmark the performance of the proposed model. Extensive simulation results indicated an accuracy of 93.33%, 100%, and 100% for the classification of conservation, reform, and revolutionary classes, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.