Abstract
We prove that both the embedding of the category of Hopf algebras into that of bialgebras and the forgetful functor from the category of Hopf algebras to the category of algebras have right adjoints; in other words, every bialgebra has a Hopf coreflection, and on every algebra there exists a cofree Hopf algebra. In this way, we give an affirmative answer to a forty-years old problem posed by Sweedler. On the route, the coequalizers and the coproducts in the category of Hopf algebras are explicitly described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.