Abstract

Catalytic wall (structured) reactors and structured supports are suitable to study the catalytic properties of nanosized materials. The coating of metallic (aluminum and stainless steel) plates by thin layers of active phase is presented in two cases, VO x /TiO 2 and Co/SiO 2, catalysts used in the oxidative dehydrogenation (ODH) of propane and in Fischer–Tropsch synthesis (FTS) of clean fuels, respectively. The preparation of coated plates and their characterisation by various methods of physicochemical analysis are described. Both chemical and physical methods were used for coating. VO x /TiO 2 layers were obtained by grafting of Ti (on Al or stainless-steel plates) and V (on TiO 2) alkoxides and use of sol–gel media or suspension. A silica primer was deposited (on stainless-steel plate) by plasma-assisted chemical vapour deposition (PACVD) onto which Co oxide and silica were coprecipitated from sol–gel. The catalytic experiments in the respective reactions were carried out in special plate reactors and compared with those of catalytic powders. The study shows that the coating of a metallic substrate by a catalyst is not straightforward and requires specific studies dealing with both chemistry (chemical affinity between substrate and catalytic layers) and catalytic engineering (catalytic performance in taylor-made reactors).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.