Abstract

Large amounts of lignin are produced in the pulp and paper industry and are still not used in a more valuable way. Lignin has great potential as a renewable raw material for the production of biofuels and high value chemical products. The aim of the present work was to study the hydropyrolysis process of two industrial Kraft lignin types and evaluate the influence of operating temperature and the addition of two acid catalysts: a widely known commercial zeolite (ZSM-5) and niobic acid (HY-340), which has been poorly explored as a catalyst applied to biomass. HY-340, Nb2O5·nH2O, as well as commercial zeolites, has desirable acidic properties, and a low cost compared to traditional catalysts employed in catalytic pyrolysis. The composition of the vapors produced in a micropyrolyzer (CDS-5200) was analyzed in an online gas chromatograph coupled to a mass spectrometer (PY-GC/MS). The effects of operational parameters, such as reaction temperature and catalyst concentration added to lignins, were also investigated. The results showed that the use of ZSM-5 as a catalyst in hydropyrolysis reactions of both lignins promotes a significant increase in the formation of aromatic hydrocarbons. In the tests performed, the increase in selectivity for aromatic hydrocarbons reached a maximum of 98% of the area for lignin 1 and 99% for lignin 2. The addition of HY-340 in the reactions of catalytic hydropyrolysis of the industrial lignins resulted in an increase in the selectivity of open chain or aliphatic hydrocarbons, mainly n-alkanes, which reached a maximum value of 93% of area for lignin 1 and 92% for lignin 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.