Abstract

Valorization of waste polyolefins by a sequential combination of thermal pyrolysis and catalytic hydroconversion over a bifunctional metal/acid catalyst (e.g. zeolite) is an efficient route to produce transportation fuels. However, the zeolite strong acidity typically causes extensive cracking and loss of liquid fuels. In this work, mild dealumination with oxalic acid of a hierarchical Beta zeolite was used to achieve Ni 7%/h-Beta catalysts with Si/Al ratios within the 25 – 130 range. These catalysts were tested in the hydroconversion of a model mixture of LDPE thermal pyrolysis product (1-dodecene/n-dodecane, 50/50 w/w). The highest share of liquid fuels (∼ 90%) was achieved over 7% Ni/h-Beta (SiAl = 130). Besides, due to its high accessibility and tailored acidity, the product contained a meaningful amount of isoparaffins (12%) and a negligible content of olefins (< 3.5%). Thus, this catalyst holds promise for plastic waste hydroconversion towards transportation fuels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.