Abstract

We utilized first-principles spin-polarized density functional theory (DFT) calculations to study the electrocatalytic reaction steps on FeN4/C site of carbon nanotubes. O2 molecule can be adsorbed and partially reduced on FeN4/C site without any activation energy barrier. The partially reduced O2 further reacts with H+ and e− through a direct pathway (DPW) and form two water molecules without any activation energy barrier. Through an indirect pathway (IDPW), there is an activation energy barrier of ~0.15eV for the formation of the first H2O molecule. The formation of the second H2O molecule through IDPW does not have any activation energy barrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.