Abstract

MoS2 phases supported on Al2O3 with different content in the range 5–20 wt% were prepared, characterized and tested as catalysts for the H2S oxidative decomposition for the simultaneous production of hydrogen and sulphur. The chemical-physical characterization results have evidenced a good dispersion of MoS2 on Al2O3 support.With respect to the Al2O3, MoS2 loading influenced particularly the value of H2 yield and minimized the SO2 production without substantial differences in H2S conversion (~50%). In particular, the highest H2 yield was observed for the catalyst having a nominal MoS2 loading of 10 wt%.A predictive mathematical model of the H2S oxidative decomposition reaction in presence of 10 wt% MoS2-based catalyst was developed through the identification of the main reactions occurring in the system. The predictive capability of the model was verified in the temperature range between 1073 and 1273 K by varying also the H2S inlet concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.