Abstract

A cobalt-based hydrotalcite-like compound was prepared using a constant-pH coprecipitation method. Cobalt-transition metal oxides (Co2XAlO, X = Co, Mg, Ca and Ni) were investigated for the deep catalytic oxidation of o-chlorophenol as a typical heteroatom contaminant containing chlorine atoms. The partial substitution of Co by Mg, Ca or Ni in the mixed oxide can promote the catalytic oxidation of o-chlorophenol. The Co2MgAlO catalyst presented the best catalytic activity, and could maintain 90% o-chlorophenol conversion at 167.1°C, compared only 27% conversion for the Co3AlO catalyst. The results demonstrated that the high activity could be attributed to its increased low-temperature reducibility, rich active oxygen species and excellent oxygen mobility. In the existence of acid and base sites, catalysts with strong basicity also showed preferred activity. The organic by-products generated during the o-chlorophenol catalytic oxidation over Co2MgAlO catalyst included carbon tetrachloride, trichloroethylene, 2,4-dichlorophenol, and 2,6-dichloro-p-benzoquinon, et al. This work provides a facile method for the preparation of Co-based composite oxide catalysts, which represent promising candidates for typical chlorinated and oxygenated volatile organic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.