Abstract

Water-insoluble organic pollutants in environment, such as sea oil spill, industrial reagents, and the abused organic pesticides, bring great risks to global water systems, which thus requires effective approaches for organic pollutant elimination. In this study, we report a catalytic metal-organic framework (MOF)-melamine foam (MF) composite material (DDT-UiO-66-NH2@MF) showing excellent oil-water separation performance and enzyme-like degradation ability toward organophosphorus pesticides. The fabrication of DDT-UiO-66-NH2@MF is based on the immobilization of a MOF-derived nanozyme (UiO-66-NH2) on MF sponge, and followed by the hydrophobic modification of UiO-66-NH2 by 1-dodecanethiol (DDT). The obtained DDT-UiO-66-NH2@MF thus displayed superhydrophobic/superhydrophilic property with a high water contact angle (WCA = 144.6°) and specific adsorption capacity toward various oils/organic solvents (62.2-119.8g/g), which leads to a continuous oil-water separation on a simple device. In the meanwhile, owing to the enzyme-like property of UiO-66-NH2, DDT-UiO-66-NH2@MF also displayed good ability to hydrolyze paraoxon under mild conditions, which facilitates the elimination of toxic pesticide residuals in water systems. This work provides a simple, efficient, and green approach for the separation and treatment of water-insoluble organic pollutants, as well as expands the use of MOFs-MF sponge composite materials in environmental sustainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.