Abstract

Quantification of extracellular tumor markers has shown great promise for non-invasive cancer diagnosis. Combined detection of multiple tumor markers instead of a single one is valuable for accurate diagnosis. Here, we integrate CRISPR-Cas12a with DNA catalytic hairpin assembly (CHA) to doubly amplify the output signal for detecting microRNA-182 (miR-182), which is overexpressed by gastric cancer patients. Additionally, we develop a CHA system with self-replicating capacity (SRCHA) to realize dual-signal amplification for the detection of carcinoembryonic antigen (CEA), a broad-spectrum tumor marker. The proposed cascade amplification strategies enable ultrasensitive detection of miR-182 and CEA with low LODs of 0.063 fM and 4.8 pg mL−1, respectively. Moreover, we design a ternary “AND” logic gate using different concentrations of miR-182 and CEA as inputs, which demonstrates intelligent diagnosis of gastric cancer staging with a high accuracy of 93.3% in a clinical cohort of 30 individuals. Overall, our study expands the application of CRISPR-Cas12a in biosensing and provides a new diagnostic strategy for non-invasive liquid biopsy of gastric cancer before resorting to a traumatic tissue biopsy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.