Abstract

Six first-row transition metal cations (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) were evaluated as catalysts for ethene dimerization to 1-butene. This is an important reaction in the chemistry of CC bond formation and in the conversion of natural gas to higher hydrocarbons. Two related classes of transition metal cation catalysts were investigated: 1) single transition metal cations supported on zirconium oxide nodes of the metal–organic framework NU-1000 and 2) small metal hydroxide clusters with two metal atoms (M2) that could be grown by atomic layer deposition on a support exhibiting isolated hydroxyl groups. Using scaling relations, the free energies of co-adsorbed hydrogen and ethene (i.e., (H/C2H4)*) and adsorbed ethyl (i.e., C2H5*) were identified as descriptors for ethene dimerization catalysis. Using degree of rate control analysis, it was determined that the rate controlling steps are either ethene insertion (CC bond forming) or β-hydride elimination (CH bond breaking), depending on the metal. Using degree of catalyst control analysis, it was determined that activity on all the catalysts studied could be improved by tuning the free energy of C2H5*.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.