Abstract

The chemical recycling of polyolefin presents a considerable challenge, especially as upcycling methods struggle with the reality that plastic wastes typically consist of mixtures of polyethylene (PE), polystyrene (PS), and polypropylene (PP). We report a catalytic aerobic oxidative approach for polyolefins upcycling with the corresponding carboxylic acids as the product. This method encompasses three key innovations. First, it operates under atmospheric pressure and mild conditions, using O2 or air as the oxidant. Second, it is compatible with high-density polyethylene, low-density polyethylene, PS, PP, and their blends. Third, it uses an economical and recoverable metal catalyst. It has been demonstrated that this approach can efficiently degrade mixed wastes of plastic bags, bottles, masks, and foam boxes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.