Abstract

The catalytic combustion of 1-methylnaphthalene (1-MN), a PAH representative molecule, was carried out over USHY and 0.8%PtUSHY catalysts in presence of steam. These catalysts are able to transform low concentration of 1-MN into carbon dioxide at 300°C over USHY catalyst and at 200°C over PtUSHY, without by-products formation. The presence of platinum on the USHY increases the catalytic activity, hence the reaction rate. The influence of platinum content showed that 0.5% of platinum deposited on the zeolite was sufficient to oxidize 900ppm of 1-MN at 300°C.The influence of water content in the feed was investigated and several assumptions were put forth to explain our results. The carbon dioxide yield decreases in the 0–12% range of relative humidity (RH). When RH increases up to 12% the carbon dioxide yield increases. Over USHY catalyst and for low water content (RH<12%), water could be adsorbed over strong hydrophylic sites of USHY zeolite or via H2O dimer (neutral complex form) formation. Over PtUSHY catalysts, water adsorption over the PtO phase could be considered. For high water content (RH>12%), water cluster formation via H2O dimer (ion-pair complex form) is proposed on both catalysts. This form of H2O dimer (ion-pair complex) could generate an acidity, which facilitates the formation of oxygenated compounds easily degradable into carbon dioxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.