Abstract

Catalytic carbon-carbon bond-forming reactions of weakly acidic carbon pronucleophiles with N-aryl imines, α,β-unsaturated amides, and others under proton-transfer conditions were developed by designing strongly basic reaction intermediates known as product bases. The reactions proceed smoothly in the presence of a catalytic amount of strong base such as KH or alkaline metal amides. Modification of the metal cations by using chiral macrocyclic crown ethers allowed catalytic asymmetric 1,4-addition reactions to proceed with high enantioselectivities. This concept can be applied to Brønsted-base-catalyzed reactions of a wide range of weakly acidic carbon pronucleophiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.