Abstract

Hetero- and homogeneous acid catalysts are effective catalysts for the production of biodiesel from oils containing high free fatty acids. The protic salts synthesized from natural amino acids were examined for catalytic activity and efficiency for the esterification of oleic acid after structural identification and characterization. In the esterification reaction of oleic acid with methanol, [Asp][NO3 ] was the best catalyst, and its high activity correlated to its high Hammett acidity. The optimal reaction conditions for the esterification of oleic acid to achieve 97 % biodiesel yield were: 70 °C, 10 % catalyst loading (w/w, on oleic acid basis), methanol/oleic acid ratio 7.5:1, and 5 h. Generally, [Asp][NO3 ] could be a good catalyst for the esterification of oleic acid with alcohols with chain lengths of up to six. The biodiesel yield of 93.86 % obtained from palm fatty acid distillate implies that the catalyst has potential for industrial application. A study of the kinetics indicated that the reaction followed pseudo-first-order kinetics with an activation energy and pre-exponential of 57.36 kJ mol-1 and 44.24×105 min-1 , respectively. The aspartic acid-derived protic salt is a promising, operationally simply, sustainable, renewable, and possibly biodegradable catalyst for the conversion of free fatty acids into biodiesel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.