Abstract

Mono-N-protected amino acids (MPAAs) are increasingly common ligands in Pd-catalyzed C-H functionalization reactions. Previous studies have shown how these ligands accelerate catalytic turnover by facilitating the C-H activation step. Here, it is shown that MPAA ligands exhibit a second property commonly associated with ligand-accelerated catalysis: the ability to support catalytic turnover at substoichiometric ligand-to-metal ratios. This catalytic role of the MPAA ligand is characterized in stoichiometric C-H activation and catalytic C-H functionalization reactions. Palladacycle formation with substrates bearing carboxylate and pyridine directing groups exhibit a 50-100-fold increase in rate when only 0.05 equivalents of MPAA are present relative to PdII . These and other mechanistic data indicate that facile exchange between MPAAs and anionic ligands coordinated to PdII enables a single MPAA to support C-H activation at multiple PdII centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.