Abstract

A TiO2/ZnO oxide system was proposed as a support for the immobilization of laccase from Trametes versicolor (LTV). The obtained TiO2/ZnO/LTV biocatalytic system was then applied in the decolorization/degradation of C.I. Reactive Black 5 and C.I. Acid Green 25 dyes. The efficiency of immobilization was evaluated based on catalytic properties (Bradford method, oxidation reaction of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and physicochemical (spectroscopic, porous, electrokinetic) analysis. The immobilization process was carried out with high performance (99.4%). Immobilized laccase retained about 40% of its activity in the whole analyzed temperature range and after 10 reaction cycles. Immobilization efficiency was also indirectly confirmed by the presence of characteristic functional groups (–C–H and –C–O), nitrogen and carbon on the TiO2/ZnO/LTV biocatalytic surface, identified by spectroscopic analyses. The increase in the surface area to 126 m2/g, change of isoelectric point (2.0) and zeta potential ranges (from +12.0 to −20.0 mV) after the immobilization process were also observed. The results show that the designed biocatalytic system enables the removal of acid dyes (C.I. Reactive Black 5 and C.I. Acid Green 25) with high efficiency (99% and 70%, respectively). Mass spectroscopy analysis indicated possible degradation products formed by the cleavage of N=N and C–N bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.