Abstract

Nanocrystals (NCs) of a Pt or Pd or Pt–Pd alloy shell supported on a Au core were synthesized and dripped onto a glassy carbon (GC) surface to generate thin films. Their electrocatalytic activity towards the oxygen reduction reaction (ORR) was studied employing hydrodynamic cyclic voltammetry. Of the Pt or Pt–Pd alloy electrocatalysts synthesized over a Au core (including Au cores produced from redox-transmetalation of Ni cores), Pt–Pd@Au, Pt@Au, and Pt@Au′ NCs—which contained heterogeneous NCs with spherical, triangular, squared, pentagonal, hexagonal, heptagonal, and rod-like shapes, with large (about 80 nm in several cases), well-defined crystalline structures, and evidenced a nanodendritic Pt or Pt–Pd alloy covering pattern at the NC surface—exhibited high electrocatalytic activity towards ORR and high stability (without dissolution of inner metallic nanoparticles such as Au) after 10,000 potential scans—features that suggest their utility for use in acid fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.