Abstract
Limonene dioxide is a platform molecule for the production of new biopolymers. First attempts at limonene epoxidation were made by using low-coordination titanium supported on SBA-16 as the catalyst using tert-butyl hydroperoxide as the oxidizing agent, but no limonene dioxide was obtained. When limonene was substituted by 1,2-limonene oxide, the yield of limonene dioxide was only 13% in the same conditions. Two other techniques, both using in situ generated dimethyl dioxirane by the reaction of acetone with Oxone, have been studied and compared. These reactions are carried out in semibatch conditions and at room temperature. The first double epoxidation of limonene was performed in a conventional biphasic organic–water system and the other in excess acetone. The former epoxidation of limonene using ethyl acetate as the organic phase allowed reaching 95% conversion and yielding 33% of limonene dioxide. In comparison, when the reaction was performed in acetone, a limonene dioxide yield of 97% was observed ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.