Abstract
The ring-opening cycloisomerization reactions of cyclopropenyl ketones developed by S. Ma et al. [J. Am. Chem. Soc. 2003, 125, 12386–12387] provided an efficient method for the constructions of trisubstituted furans in which an elegant control of the regiochemistry was achieved by using CuI or PdCl2 catalyst. In the current report we aimed at uncovering the origin of the divergent regiochemistry of the reactions with different metal halide catalysts using quantum chemical calculations. By comparing the energies of all possible pathways, we found that a novel mechanism involving a formal 1,1-halometalation is the energetically most favorable one. In this pathway, an organometallic intermediate is involved from addition of the metal atom and the halide ligand to the same sp2 carbon of the cyclopropene moiety by sequential 1,5-addition and 1,5-rearrangement steps, and the furan product is finally formed via an asynchronous intramolecular substitution/metal halide elimination process. The initial 1,5-addition...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.