Abstract
Caulobacter crescentus is an obligate aerobe which is exposed to high concentrations of photosynthetic oxygen and low levels of nutrients in its aquatic environment. Physiological studies of oxidative and starvation stresses in C. crescentus were undertaken through a study of lacZ fusion and null mutant strains constructed from the cloned 5' end of katG, encoding a catalase-peroxidase. The katG gene was shown to be solely responsible for catalase and peroxidase activity in C. crescentus. Like the katG of Escherichia coli, C. crescentus katG is induced by hydrogen peroxide and is important in sustaining the exponential growth rate. However, dramatic differences are seen in growth stage induction. E. coli KatE catalase and KatG catalase-peroxidase activities are induced 15- to 20-fold during exponential growth and then approximately halved in the stationary phase. In contrast, C. crescentus KatG activity is constant throughout exponential growth and is induced 50-fold in the stationary phase. Moreover, the survival of a C. crescentus katG null mutant is reduced by more than 3 orders of magnitude after 24 h in stationary phase and more than 6 orders of magnitude after 48 h, a phenotype not seen for E. coli katE and katG null mutants. These results indicate a major role for C. crescentus catalase-peroxidase in stationary-phase survival and raise questions about whether the peroxidatic activity as well as the protective catalatic activity of the dual-function enzyme is important in the response to starvation stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.