Abstract

Mitochondria have emerged as the central components of both caspase-dependent and independent apoptosis signalling pathways through release of different apoptogenic proteins. We previously documented that parental and differentiated Friend's erythroleukemia cells were induced to apoptosis by oligomycin and H(2)O(2) exposure, showing that the energy impairment occurring in both cases as a consequence of a severe mitochondrial F(0)F(1)ATPsynthase inactivation was a common early feature. Here we provide evidence for AIF and Endo G mitochondrio-nuclear relocation in both cases, as a component of caspase-independent apoptosis pathways. No detectable change in mitochondrial transmembrane potential and no variation in mitochondrial levels of Bcl-2 and Bax are observed. These results point to the osmotic rupture of the mitochondrial outer membrane as occurring in response to cell exposure to the two energy-impairing treatments under conditions preserving the mitochondrial inner membrane. A critical role of the mitochondrial F(0)F(1)ATP synthase inhibition in this process is also suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.