Abstract

Besides cell death, caspase-9 participates in non-apoptotic events, including cell differentiation. To evaluate a possible impact on the expression of chondrogenic/osteogenic factors, a caspase-9 inhibitor was tested invitro. For this purpose, mouse forelimb-derived micromass cultures, the most common chondrogenic invitro model, were used. The following analyses were performed based on polymerase chain reaction (PCR) arrays and real-time PCR. The expression of several chondrogenesis-related genes was shown to be altered, some of which may impact chondrogenic differentiation (Bmp4, Bmp7, Sp7, Gli1), mineral deposition (Alp, Itgam) or the remodelling of the extracellular matrix (Col1a2, Mmp9) related to endochondral ossification. From the cluster of genes with altered expression, Mmp9 showed the most significant decrease in expression, of more than 50-fold. Additionally, we determined the possible impact of caspase-9 downregulation on the expression of other Mmp genes. A mild increase in Mmp14 was observed, but there was no change in the expression of other studied Mmp genes (-2, -3, -8, -10, -12, -13). Interestingly, inhibition of Mmp9 in micromasses led to decreased expression of some chondrogenic markers related to caspase-9. These samples also showed a decreased expression of caspase-9 itself, suggesting a bidirectional regulation of these two enzymes. These results indicate a specific impact of caspase-9 inhibition on the expression of Mmp9. The localisation of these two enzymes overlaps in resting, proliferative and pre-hypertrophic chondrocytes during invivo development, which supports their multiple functions, either apoptotic or non-apoptotic. Notably, a coincidental expression pattern was identified in Pik3cg, a possible candidate for Mmp9 regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.