Abstract

AbstractVessel collisions with bridges occur frequently worldwide and have the potential to cause enormous casualties, substantial property loss, and environmental destruction. Physical protection systems designed for bridge piers against vessel collisions are viable solutions to alleviate/prevent those disruption costs. This paper introduces a floating steel fender system for bridge pier protection and evaluates the performance using an explicit dynamic finite-element analysis code. The analysis method is validated against available drop-weight impact tests of a steel box module, because the steel fender system is constructed by repeatedly stacking and aligning a similar subassembly. The introduced fender system noticeably reduced the peak impact force applied on a bridge pier by approximately 55.3% and on the colliding vessel by approximately 56.2% while extending the impact duration approximately 273.1% as compared to the head-on collision without any protection. It was also shown that the initial kine...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.