Abstract

Therapeutic siRNA is a prodrug that requires Ago2-mediated site-specific hydrolysis of the sense strand before RNA interference can occur. Although this metabolic activation step was first described 15years ago, the kinetics of this reaction, and its relationship to in vivo siRNA efficacy, remains unexplored in the literature. To provide a roadmap to address these gaps, we describe a liquid chromatography-mass spectrometry method to monitor formation of the cleaved sense-strand metabolites in a reconstituted system. In the absence of metabolite standards for quantitation, we apply an ionization efficiency correction across a panel of siRNA molecules and find that it improves in vitro-in vivo correlation in a transgenic mouse model. Finally, we lay out a case for why Michaelis-Menten kinetics will likely be inadequate for describing Ago2-mediated metabolic activation kinetics, and propose several alternative models that can be solved numerically and applied to quantitated kinetic data when it becomes available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.