Abstract

Trusted relays are the main state-of-the-art way to realize quantum key distribution networks. However, it is hard to require that all nodes in the network are fully trusted. In a multipath key-transmission mechanism, the nodes can be weakly trusted because the secret key can be split into many parts and each part is transmitted to the receiver through a different path. However, if the capacity of a node’s quantum key pool is poorly designed, an attacker, Eve may eavesdrop on the communicating parties’ secret message by initiating a redirection attack. In this paper, we show that Eve can trigger a cascading collapse effect by collapsing one of the edges in the network and forcing the communication parties to transmit the message through the nodes controlled by Eve. The influence of the traffic transfer ratio and the control parameters of the edge load on the breakdown probability of the edge are analyzed using a simulation. In order to effectively defend against the cascading attack, it is important for the designer to handle the relationship between the traffic and the capacity of the quantum key pool of each node in the network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.