Abstract

In this paper, a different type of cross flow dielectric barrier discharge (DBD) reactor was designed and tested. Here the gas flow is perpendicular to the barrier discharge electrode. Discharge plasma was utilized to oxidize NO contained in the exhaust gas to NO2 and subsequent NO2 removal can be improved using an adsorbent system. A detailed study of DeNOX in a stationary diesel engine exhaust was carried out using pulsed electrical discharges/adsorbent processes. Activated alumina (Al2O3) and MS-13x were used as adsorbents at room temperature. The main emphasis is laid on the removal of NOX from the filtered diesel engine exhaust. In filtered exhaust environment, the cross flow reactor along with adsorbent exhibits a superior performance with regard to NOX removal when compared to that with axial flow of gas. In this paper we bring out a relative comparison of discharge plasma and plasma-adsorbent process at various gas flow rates, ranging from 2 l/min to 25 l/min. The discharge plasma-adsorbent assisted barrier discharge reactor has shown promising results in NOX removal at high flow rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.