Abstract

Owing to the limits of incident energy and hardware system, hyperspectral (HS) images always suffer from low spatial resolution, compared with multispectral (MS) or panchromatic (PAN) images. Therefore, image fusion has emerged as a useful technology that is able to combine the characteristics of high spectral and spatial resolutions of HS and PAN/MS images. In this paper, a novel HS and PAN image fusion method based on convolutional neural network (CNN) is proposed. The proposed method incorporates the ideas of both hyper-sharpening and MS pan-sharpening techniques, thereby employing a two-stage cascaded CNN to reconstruct the anticipated high-resolution HS image. Technically, the proposed CNN architecture consists of two sub-networks, the detail injection sub-network and unmixing sub-network. The former aims at producing a latent high-resolution MS image, whereas the latter estimates the desired high-resolution abundance maps by exploring the spatial and spectral information of both HS and MS images. Moreover, two model-training fashions are presented in this paper for the sake of effectively training our network. Experiments on simulated and real remote sensing data demonstrate that the proposed method can improve the spatial resolution and spectral fidelity of HS image, and achieve better performance than some state-of-the-art HS pan-sharpening algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.